about 30% of the I_{Ca} and I_{Ba} . Administration of anoxic solution did not further inhibit I_{Ca} in cells previously exposed to ZnPP-IX or SnPP-IX. We conclude that both anoxia and HO suppress I_{Ca} and I_{Ba} with the same intensity and kinetics and O_2 sensing effect becomes negligible in cells exposed to HO inhibitors.

3605-Pos

A New Paradigm for Gem Regulation of Voltage-Gated Ca²⁺ Channels Mingming Fan, Jian Yang.

Columbia University, New York, NY, USA.

The RGK (Rem, Rem2, Rad, Gem/Kir) family of Ras-related monomeric small GTP-binding proteins has emerged as potent inhibitors of high-voltage activated (HVA) Ca²⁺ channels. All RGK proteins bind all four subfamilies of HVA Ca²⁺ channel β subunits (Ca_vβs), and Ca_vβ is required for RGK-induced inhibition. Two modes of RGK action have been reported: (1) RGKs interfere with channel trafficking to the plasma membrane and hence reduce the number of surface channels; (2) RGKs inhibit channels already on the plasma membrane. It is generally believed that both forms of inhibition absolutely rely on the RGK/Ca $_{\!\scriptscriptstyle V}\beta$ interaction. However, this central hypothesis has not been tested directly. We investigated the molecular mechanism of Gem inhibition of P/Qtype Ca²⁺ channels expressed in *Xenopus* oocytes and HEK 293T cells. Gem inhibited P/Q channels without affecting their surface expression. Application of a purified Gem protein domain in inside-out membrane patches acutely inhibited P/Q channels. This acute inhibition was completely abolished when Ca_νβ was removed from surface P/Q channels, but it was fully restored after the channels regain $Ca_{\nu}\beta$. These results unequivocally demonstrate that $Ca_{\nu}\beta$ is indispensable for Gem inhibition of surface P/Q channels. Surprisingly, however, complete disruption of the Gem/Ca_v β interaction, as shown biochemically, did not affect Gem inhibition. On the other hand, we discovered that Gem associated with Ca_v2.1 in a Ca_vβ-independent manner. Finally, we identified a 12-amino acid region in the C-terminus of Gem that was sufficient to produce inhibition in inside-out patches and another site in the core region of Gem that was also involved in Gem inhibition. Based on these findings, we propose that Gem directly binds and inhibits $Ca_V\beta$ -primed HVA Ca^{2+} channels on the plasma membrane.

3606-Pos

The β Subunit of Voltage-Gated Ca^{2+} Channels Acts as a Transcriptional Regulator

Yun Zhang, Yoichi Yamada, Mingming Fan, Saroja D. Bangaru,

Bochao Lin, Jian Yang.

Columbia University, New York, NY, USA.

 Ca^{2+} channel β subunits ($Ca_{\nu}\beta s$) are essential for the surface expression and proper gating of high-voltage activated (HVA) Ca²⁺ channels. In yeast two-hybrid screens aimed at discovering novel Ca_vβ-interacting proteins, we identified a new splicing isoform of Pax6, a transcription factor crucial for the development of a variety of organs and tissues, especially the eye. Pax6 contains two DNA-binding domains (paired domain and homeodomain), a glycine-rich linker connecting these two domains, and a carboxyl (C)-terminal proline, serine and threonine (PST)-rich transactivation domain. The newly isolated isoforms, named Pax6(S), retains the paired domain, linker and homeodomain of Pax6, but its C-terminus is composed of a truncated classic PST domain and a unique S tail. In contrast to Pax6, which is 100% conserved from rodent to human and is expressed in both embryo and adult, Pax6(S) is completely conserved only in human and chimpanzee, and it is expressed only at early stages of development, suggesting that $\mbox{\rm Pax6}(S)$ has a noncanonical function. Pax6(S) retained strong transcriptional activity, although its C-terminus showed less transactivity compared with the canonical PST domain. The interaction between Pax6(S) and $Ca_v\beta$ was mainly endowed by the S tail of Pax6(S). Co-expression of Pax6(S) with a HVA Ca^{2+} channel complex containing the β_3 subunit in Xenopus oocytes did not affect channel properties. However, the transcriptional activity of Pax6(S) was markedly suppressed by β_3 . Furthermore, in the presence of Pax6(S), β_3 was translocated from the cytoplasm to the nucleus. These results suggest that full length Ca_vβs may function as transcription regulators, independent of their role in regulating Ca²⁺ channel activity.

3607-Pos

Increased Intracellular Magnesium Attenuates $\beta\text{-}Adrenergic$ Stimulation of the Cardiac Cav1.2 Channel

Sylvain Brunet, Todd Scheuer, William A. Catterall.

University of Washington, Seattle, WA, USA.

Increases in intracellular Mg²⁺ (Mg_i²⁺), as observed in transient cardiac ischemia, decrease L-type Ca²⁺ current of mammalian ventricular myocytes. Tran-

sient cardiac ischemia is also associated with an increase in sympathetic tone, which could stimulate the L-type Ca²⁺ current. Therefore, the effect of Mg_i² on L-type Ca²⁺ current in the context of increased sympathetic tone is unclear. We hypothesized that increased Mg_i^{2+} in ventricular myocytes might alter the β -adrenergic stimulation of L-type Ca^{2+} current. Using the whole-cell patch clamp method to study ventricular myocytes from C57BL6 mice, we tested the impact of increased ${\rm Mg_i}^{2+}$ on the stimulatory effect of the β -adrenergic receptor (β -AR) cascade activation on L-type ${\rm Ca}^{2+}$ current. We observed that exposure of myocytes to higher Mg_i^{2+} concentration decreased isoproterenol stimulation of the L-type Ca²⁺ current from 75 \pm 13 % with 0.8 mM Mg_i²⁺ (n=11) to 20 \pm 8 % with 2.4 mM Mg_i²⁺ (n=7) (p < 0.01). Because Mg_i²⁺ could act at multiple sites in the β-AR cascade, we activated this signaling cascade at different steps using pharmacological tools to determine the site(s) of ${\rm Mg_i}^{2+}$ action. We found that exposure of ventricular myocytes to increased ${\rm Mg_i}^{2+}$ attenuated the stimulation of L-type ${\rm Ca^{2+}}$ current mediated by isoproterenol (β-AR stimulation), forskolin (adenylate cyclase stimulation), and IBMX (phosphodiesterase inhibition). These experiments rule out significant effects on the β-AR, Gs protein, adenylate cyclase, and phosphodiesterase (I-V). Taken together, our results suggest that, in transient ischemia, increased ${\rm Mg_i}^{2+}$ reduces the entry of ${\rm Ca}^{2+}$ via the L-type ${\rm Ca}^{2+}$ current by directly acting on the Ca_V1.2 channel in a cell-autonomous manner, effectively decreasing the metabolic stress imposed on ventricular myocytes until blood flow can be reestablished.

3608-Pos

Localized Calcineurin in Calcium- Dependent Inactivation of L-type Calcium Channels

William A. Sather, Seth F. Oliveria, Mark L. Dell'Acqua. University of Colorado School of Medicine, Aurora, CO, USA.

The open probability of Ca_V1.2 L-type Ca²⁺ channels is enhanced by cAMPdependent protein kinase (PKA), which is scaffolded to Ca_V1.2 channels by Akinase anchoring proteins (AKAPs). Ca_V1.2 channels also undergo negative autoregulation via Ca²⁺-dependent inactivation (CDI). CDI relies upon binding of Ca²⁺/calmodulin (CaM) to an IQ motif in the carboxy tail of Ca_V1.2 L-type channels, a mechanism seemingly unrelated to phosphorylation-mediated channel enhancement. In neurons, AKAP79/150 anchors both PKA and the Ca²⁺-activated phosphatase calcineurin (CaN) to Ca_V1.2 channels. Using transfected tsA201 cells or neurons, and tools such as the isolated calcineurin autoinhibitory peptide, over-expression of the catalytically-inactive $CaN_{\rm H151A}$ mutant, and RNAi suppression of AKAP79, we have found that channel-linked CaM serves as a Ca²⁺ sensor for CaN, and that Ca²⁺/CaM-activated CaN participates in CDI by reversing channel enhancement by kinases such as PKA. We have also observed that $I \rightarrow E$ substitution in the IQ motif produces a mutant Ca_V1.2_{I/EQ} channel that - when co-expressed with AKAP79 in tsA201 cells unexpectedly exhibits ultra-fast inactivation. Ultra-fast inactivation is eliminated in Ca²⁺-free Na⁺ external solution, as well as by over-expression of the CaN_{H151A} mutant or stimulation of PKA with forskolin. One interpretation is that the intact IQ motif's affinity for Ca²⁺/CaM limits the speed of CDI, and that reducing IQ affinity for Ca²⁺/CaM via I→E substitution allows CDI to proceed at a greatly speeded rate. FRET results with the Ca_V1.2_{I/EO} mutant or with AKAP79 lacking the CaN anchoring motif suggest that, during periods of elevated channel activity, the IQ-CaM and AKAP79-CaN interactions are both necessary for CaN-mediated reversal of current enhancement by PKA. In sum, our work supports a synthetic view fusing previous ideas regarding CaM and phosphorylation signaling in CDI.

3609-Pos

Sumoylation of Voltage-Gated Alpha1a Calcium Channels Maria A. Davila¹, Haiyan Chen², Erika S. Piedras-Renteria².

¹Loyola University Chicago, Lakeshore, IL, USA, ²Loyola University Chicago, Maywood, IL, USA.

The trinucleotide repeat disorder Spinocerebellar ataxia type 6 (SCA6) results form alterations in the *CACNA1A* gene coding for the α_{1A} subunit of the neuronal voltage-dependent P/Q-type calcium channel (Ca_V2.1). We have previously reported that the α_{1A} subunit is susceptible to proteasomal and lysosomal-mediated degradation, and that ubiquitin-mediated degradation is abnormal in SCA6 α_{1A} , consistent with a glutaminopathy component in SCA6. The Small Ubiquitin-related Modifier (SUMO) is only distantly related to ubiquitin (18% homology), but shares many similarities with it, including a similar protein size, tri-dimensional structure, a C-terminal glycine-glycine motif for substrate conjugation and many PEST motif-containing substrate targets. SUMO's primary functions involve nuclear events and also include